316 research outputs found

    The sensitivity of oceanic precipitation to sea surface temperature

    No full text
    Our study forms the oceanic counterpart to numerous observational studies over land concerning the sensitivity of extreme precipitation to a change in air temperature. We explore the sensitivity of oceanic precipitation to changing sea surface temperature (SST) by exploiting two novel datasets at high resolution. First, we use the Ocean Rainfall And Ice-phase precipitation measurement Network (OceanRAIN) as an observational along-track shipboard dataset at 1 min resolution. Second, we exploit the most recent European Reanalysis version 5 (ERA5) at hourly resolution on a 31 km grid. Matched with each other, ERA5 vertical velocity allows the constraint of the OceanRAIN precipitation. Despite the inhomogeneous sampling along ship tracks, OceanRAIN agrees with ERA5 on the average latitudinal distribution of precipitation with fairly good seasonal sampling. However, the 99th percentile of OceanRAIN precipitation follows a super Clausius–Clapeyron scaling with a SST that exceeds 8.5 % K−1 while ERA5 precipitation scales with 4.5 % K−1. The sensitivity decreases towards lower precipitation percentiles, while OceanRAIN keeps an almost constant offset to ERA5 due to higher spatial resolution and temporal sampling. Unlike over land, we find no evidence for a decreasing precipitation event duration with increasing SST. ERA5 precipitation reaches a local minimum at about 26 ∘C that vanishes when constraining vertical velocity to strongly rising motion and excluding areas of weak correlation between precipitation and vertical velocity. This indicates that instead of moisture limitations as over land, circulation dynamics rather limit precipitation formation over the ocean. For the strongest rising motion, precipitation scaling converges to a constant value at all precipitation percentiles. Overall, high resolutions in observations and climate models are key to understanding and predicting the sensitivity of oceanic precipitation extremes to a change in SST

    Missing North Atlantic cyclonic precipitation in ECMWF numerical weather prediction and ERA-40 data detected through the satellite climatology HOAPS II

    Get PDF
    Intense precipitation associated with wintertime North Atlantic cyclones occurs not only in connection with frontal zones but also, and often mainly, embedded in strong cold air outbreaks to the west of mature cold fronts. Coherent structures of cloud clusters organized in mesoscale postfrontal low-pressure systems are frequently found in satellite data. Such postfrontal lows (PFL) can develop into severe weather events within few hours and can even reach Europe causing intense convective rainfall and gale force winds. Despite predicting the major storm systems numerical weather prediction (NWP) additionally needs to account for PFLs due to their frequent occurrence connected with high impact weather. But while the major cyclone systems are mostly well predicted, the forecast of PFLs remains poor. Using North Atlantic weather observations from the 1997 Fronts and Atlantic Storm Track Experiment (FASTEX) along with the standard voluntary observing ship (VOS) data led to a high quality validation data set for this usually data sparse region. For individual case studies of FASTEX cyclones with mesoscale PFLs investigations were carried out using the well calibrated precipitation estimates from HOAPS (Hamburg Ocean Atmosphere Parameters and fluxes from satellite data) compared to the NWP model output of the ECMWF (European Centre for Medium-Range Weather Forecasts). Preceding studies showed that the HOAPS precipitation structure and intensities are in good agreement with the VOS observations for all observed precipitation types within the cyclones, including PFLs. To assure that the results found in the 1997 data are still valid in the more recent ECMWF model system, a PFL rainfall comparison is carried out using HOAPS and ERA-40 (ECMWF Re-Analysis) data for the winter of 2001 and 2002. The results indicate that the ECMWF model is mostly well reproducing precipitation structures and intensities associated with frontal systems as observed in the VOS and HOAPS data, whereas PFL precipitation is mostly missing. Further investigations within the regions of PFL point out that the VOS observed surface pressure is systematically lower than reproduced in the models. This leads to the conclusion that the missing PFL precipitation in ECMWF may be primarily due to the absence of the corresponding mesoscale low-pressure syste

    Violation of Bell-like Inequality for spin-energy entanglement in neutron polarimetry

    Full text link
    Violation of a Bell-like inequality for a spin-energy entangled neutron state has been confirmed in a polarimetric experiment. The proposed inequality, in Clauser-Horne-Shimony-Holt (CHSH) formalism, relies on correlations between the spin and energy degree of freedom in a single-neutron system. The entangled states are generated utilizing a suitable combination of two radio-frequency fields in a neutron polarimeter setup. The correlation function S is determined to be 2.333+/-0.005, which violates the Bell-like CHSH inequality by more than 66 standard deviations.Comment: 4 pages 2 figure

    Komponenten des Wasserkreislaufs in Zyklonen aus Satellitendaten: Niederschlagsfallstudien

    No full text

    Simulation of ship-track versus satellite-sensor differences in oceanic precipitation using an island-based radar

    Get PDF
    The point-to-area problem strongly complicates the validation of satellite-based precipitation estimates, using surface-based point measurements. We simulate the limited spatial representation of light to moderate oceanic precipitation rates along ship tracks with respect to areal passive microwave satellite estimates using data from a subtropical island-based radar. The radar data serves to estimate the discrepancy between point-like and areal precipitation measurements. From the spatial discrepancy, two statistical adjustments are derived so that along-track precipitation ship data better represents areal precipitation estimates from satellite sensors. The first statistical adjustment uses the average duration of a precipitation event as seen along a ship track and the second adjustment uses the median-normalized along-track precipitation rate. Both statistical adjustments combined reduce the root mean squared error by 0.24 mm h 10 (55%) compared to the unadjusted average track of 60 radar pixels in length corresponding to a typical ship speed of 24–34 km h depending on track orientation. Beyond along-track averaging, the statistical adjustments represent an important step towards a more accurate validation of precipitation derived from passive microwave satellite sensors using point-like along-track surface precipitation reference data

    Measurements of rainfall rate, drop size distribution, and variability at middle and higher latitudes: application to the combined DPR-GMI algorithm

    Get PDF
    The Global Precipitation Measurement mission is a major U.S.–Japan joint mission to understand the physics of the Earth’s global precipitation as a key component of its weather, climate, and hydrological systems. The core satellite carries a dual-precipitation radar and an advanced microwave imager which provide measurements to retrieve the drop size distribution (DSD) and rain rates using a Combined Radar-Radiometer Algorithm (CORRA). Our objective is to validate key assumptions and parameterizations in CORRA and enable improved estimation of precipitation products, especially in the middle-to-higher latitudes in both hemispheres. The DSD parameters and statistical relationships between DSD parameters and radar measurements are a central part of the rainfall retrieval algorithm, which is complicated by regimes where DSD measurements are abysmally sparse (over the open ocean). In view of this, we have assembled optical disdrometer datasets gathered by research vessels, ground stations, and aircrafts to simulate radar observables and validate the scattering lookup tables used in CORRA. The joint use of all DSD datasets spans a large range of drop concentrations and characteristic drop diameters. The scaling normalization of DSDs defines an intercept parameter NW, which normalizes the concentrations, and a scaling diameter Dm, which compresses or stretches the diameter coordinate axis. A major finding of this study is that a single relationship between NW and Dm, on average, unifies all datasets included, from stratocumulus to heavier rainfall regimes. A comparison with the NW–Dm relation used as a constraint in versions 6 and 7 of CORRA highlights the scope for improvement of rainfall retrievals for small drops (Dm lt; 1 mm) and large drops (Dm gt; 2 mm). The normalized specific attenuation–reflectivity relationships used in the combined algorithm are also found to match well the equivalent relationships derived using DSDs from the three datasets, suggesting that the currently assumed lookup tables are not a major source of uncertainty in the combined algorithm rainfall estimates

    Mirrors for slow neutrons from holographic nanoparticle-polymer free-standing film-gratings

    Full text link
    We report on successful tests of holographically arranged grating-structures in nanoparticle-polymer composites in the form of 100 microns thin free-standing films, i.e. without sample containers or covers that could cause unwanted absorption/incoherent scattering of very-cold neutrons. Despite their large diameter of 2 cm, the flexible materials are of high optical quality and yield mirror-like reflectivity of about 90% for neutrons of 4.1 nm wavelength
    • …
    corecore